Di seguito la bibliografia dell’articolo “Benefici del cacao e cioccolato per la memoria”
- Scholey A, Owen L. Effects of chocolate on cognitive function and mood: a systematic review. Nutr Rev 2013;71:665–81.
- Sokolov AN, Pavlova MA, Klosterhalfen S, Enck P. Chocolate and the brain: neurobiological impact of cocoa flavanols on cognition and behavior. Neurosci Biobehav Rev 2013;37:2445–53.
- Kuriyama S, Hozaka A, Ohmori K, Shimazu T, Matsui T, Ebihara S, Awata S, Nagatomi R, Arai H,Tsuji I. Green tea consumption and cognitive function: a cross-sectional study from the Tsurugaya
Project. Am J Clin Nutr 2006;83:355–61. - Nurk E, Refsum H, Drevon CA, Tell GS, Nygaard HA, Engedal K, Smith AD. Intake of flavonoidric wine, tea, and chocolate by elderly men and women is associated with better cognitive test performance. J Nutr 2009;139:120–7.
- Inanami O, Watanabe Y, Syuto B et al (1998) Oral administration of (-)catechin protects against ischemia-reperfusion-induced neuronal death in the gerbil. Free Radic Res 29:359–365
- Youdim KA, Joseph JA (2001) A possible emerging role of phytochemicals in improving agerelated neurological dysfunctions: a multiplicity of effects. Free Radic Biol Med 30:583–594
- Ghosh D, Scheepens A. Vascular action of polyphenols. Mol Nutr Food Res. 2009;53:322–331
- Fisher ND, Hughes M, Gerhard‐Herman M, Hollenberg NK. Flavanol‐rich cocoa induces nitric‐oxide‐dependent vasodilation in healthy humans. J Hypertens. 2003;21:2281–2286
- Hollenberg NK, Fisher ND, McCullough ML. Flavanols, the Kuna, cocoa consumption, and nitric oxide. J Am Soc Hypertens. 2009;3:105–112.
- Fisher ND, Sorond FA, Hollenberg NK. Cocoa flavanols and brain perfusion. J Cardiovasc
Pharmacol. 2006;47:S210–214. - Heiss C, Dejam A, Kleinbongard P, Schewe T, Sies H, Kelm M. Vascular effects of cocoa rich in flavan‐3‐ols. JAMA. 2003;290:1030–1031.
- Engler MB, Engler MM, Chen CY, Malloy MJ, Browne A, Chiu EY, Kwak HK, Milbury P, Paul SM, Blumberg J, Mietus‐Snyder ML. Flavonoid‐rich dark chocolate improves endothelial function and increases plasma epicatechin concentrations in healthy adults. J Am Coll Nutr. 2004;23:197–204.
- Schroeter HC, Balzer J, Kleinbongard P, Keen CL, Hollenberg NK, Sies H, Kwik‐Uribe C, Schmitz HH, Kelm M. (‐)‐Epicatechin mediates beneficial effects of flavanol‐rich cocoa on vascular function in humans. Proc Natl Acad Sci U S A. 2006;103:1024–1029.
- Fisher ND, Sorond FA, Hollenberg NK. Cocoa flavanols and brain perfusion. J Cardiovasc
Pharmacol. 2006;47:S210–S214. - Sorond FA, Lipsitz LA, Hollenberg NK, Fisher ND. Cerebral blood flow response to flavanol‐rich cocoa in healthy elderly humans. Neuropsychiatr Dis Treat. 2008;4:433–440.
- Sorond FA, Hollenberg NK, Panych LP, Fisher ND. Brain blood flow and velocity: correlations between magnetic resonance imaging and transcranial Doppler sonography. J Ultrasound Med. 2010;29:1017–1022.
- Crichton GE, Elias MF, Alkerwi A.
Chocolate intake is associated with better cognitive function: The Maine-Syracuse Longitudinal Study.Appetite. 2016 May 1;100:126-32. - Spencer JPE (2008) Food for thought: the role of dietary flavonoids in enhancing human memory,learning and neuro-cognitive performance. Proc Nutr Soc 67:238–252
- Spencer JPE (2008) Flavonoids: modulators of brain function? Br J Nutr 99(E Suppl 1):ES60–
ES77 - Letenneur L, Proust-Lima C, Le GA et al (2007) Flavonoid intake and cognitive decline over a 10-year period. Am J Epidemiol 165:1364–1371
- Field DT, Williams CM, Butler LT. Consumption of cocoa flavanols results in an acute
improvement in visual and cognitive functions. Physiol Behav. 2011;103:255–260. - Huber KK, Adams H, Remky A, Arend KO. Retrobulbar haemodynamics and contrast sensitivity
improvements after CO2 breathing. Acta Ophthalmol Scand. 2006;84:481–487. - Francis ST, Head K, Morris PG, Macdonald IA. The effect of flavanol‐rich cocoa on the fMRI
response to a cognitive task in healthy young people. J Cardiovasc Pharmacol. 2006;47:S215–220. - Ruitenberg A, den Heijer T, van Bakker SL, Swieten JC, Koudstaal PJ, Hofman A, Breteler MM.
Cerebral hypoperfusion and clinical onset of dementia: the Rotterdam Study. Ann Neurol.
2005;57:789–794. - Camfield DA, Scholey A, Pipingas A, Silberstein R, Kras M, Nolidin K, Wesnes K, Pase M,
Stough C. Steady state visually evoked potential (SSVEP) topography changes associated with cocoa flavanol consumption. Physiol Behav. 2012;105:948–957. - Brickman A, Usman K, Provenzano F, Yeung L, Suzuki W, Schroeter H, Wall M, Sloan R, Small S. Enhancing dentate gyrus function with dietary flavanols improves cognition in older adults. Nature Neuroscience. 2014
- Eriksson PS, Perfilieva E, Bjork-Eriksson T, et al. Neurogenesis in the adult human hippocampus. Nat Med. 1998;4:1313–17.
- McCarty MF. Toward prevention of Alzheimers disease–potential nutraceutical strategies for
suppressing the production of amyloid beta peptides. Med Hypotheses. 2006;67:682–697. - Pak T, Cadet P, Mantione KJ, Stefano GB. Morphine via nitric oxide modulates beta‐amyloid
metabolism: a novel protective mechanism for Alzheimer’s disease. Med Sci Monit. 2005;11:BR357–366. - Schroeter HC, Balzer J, Kleinbongard P, Keen CL, Hollenberg NK, Sies H, Kwik‐Uribe C, Schmitz HH, Kelm M. (‐)‐Epicatechin mediates beneficial effects of flavanol‐rich cocoa on vascular function in humans. Proc Natl Acad Sci U S A. 2006;103:1024–1029.
- Patel AK, Rogers JT, Huang X. Flavanols, mild cognitive impairment, and Alzheimer’s dementia.
Int J Clin Exp Med. 2008;1:181–191. - Fisher ND, Sorond FA, Hollenberg NK. Cocoa flavanols and brain perfusion. J Cardiovasc
Pharmacol. 2006;47:S210–214. - Nagahama Y, Nabatame H, Okina T, Yamauchi H, Narita M, Fujimoto N, Murakami M, Fukuyama H, Matsuda M. Cerebral correlates of the progression rate of the cognitive decline in probable Alzheimer’s disease. Eur Neurol. 2003;50:1–9.
- Ruitenberg A, den Heijer T, van Bakker SL, Swieten JC, Koudstaal PJ, Hofman A, Breteler MM.
Cerebral hypoperfusion and clinical onset of dementia: the Rotterdam Study. Ann Neurol.
2005;57:789–794. - Iadecola C. Neurovascular regulation in the normal brain and in Alzheimer’s disease. Nat Rev
Neurosci 2004;5:347–360 - Girouard H, Iadecola C. Neurovascular coupling in the normal brain and in hypertension, stroke, and Alzheimer disease. J Appl Physiol 2006;100:328–335
- Sorond FA, Hurwitz S, Salat DH, Greve DN, Fisher ND
Neurovascular coupling, cerebral white matter integrity, and response to cocoa in older people. Neurology. 2013 Sep 3;81(10):904-9. - Caso F, Agosta F, Mattavelli D, Migliaccio R, Canu E, Magnani G, Marcone A, Copetti M, Falautano M, Comi G, Falini A, Filippi M.
White Matter Degeneration in Atypical Alzheimer Disease.
Radiology. 2015 Oct;277(1):162-72. - Laufs U, La FV, Plutzky J, Liao JK. Upregulation of endothelial nitric oxide synthase by HMG CoA reductase inhibitors. Circulation. 1998;97:1129–1135.
- Wassmann S, Laufs U, Baumer AT, Muller K, Ahlbory K, Linz W, Itter G, Rosen R, Bohm M, Nickenig G. HMG-CoA reductase inhibitors improve endothelial dysfunction in normocholesterolemic hypertension via reduced production of reactive oxygen species.
Hypertens. 2001;37:1450–1457. - Lilian Calderón-Garcidueñas, Antonieta Mora-Tiscareño, Maricela Franco-Lira, Janet V. Cross, Randall Engle, Mariana Aragón-Flores, Gilberto Gómez-Garza, Valerie Jewells, Lin Weili, Humberto Medina-Cortina, Edelmira Solorio, Chih-kai Chao, Hongtu Zhu, Partha S. Mukherjee, Lara Ferreira-Azevedo, Ricardo Torres-Jardón, Amedeo D’Angiulli
Flavonol-rich dark cocoa significantly decreases plasma endothelin-1 and improves cognition in urban children
Front Pharmacol. 2013; 4: 104. Prepublished online 2013 Jun 17. Published online 2013 Aug 22 - Molina L. T., Kolb C. E., de Foy B., Lamb B. K., Brune W. H., Jimenez J. L., et al. (2007). Air quality in North America’s most populous city-overview of the MCMA-2003 campaign. Atmos. Chem. Phys. 7, 2447–2473 10.5194/acp-7-2447-2007
- Molina L. T., Madrinich S., Gaffney J. S., Apel E., de Foy B., Fast J., et al. (2010). An overview of the MILAGRO 2006 Campaign: Mexico City emissions and their transport and transformation. Atmos. Chem. Phys. 10, 8697–8760 10.5194/acp-10-8697-2010
- Calderón-Garcidueñas L., Franco-Lira M., Mora-Tiscareño A., Medina-Cortina H., Torres-Jardón R., Kavanaugh M. (2013). Early Alzheimer’s and Parkinson’s disease pathology in urban children: friend versus foe responses- It is time to face the evidence. Biomed.
Res. Int. 2013:161687 10.1155/2013/161687 - Calderón-Garcidueñas L., Kavanaugh M., Block M. L., D’Angiulli A., Delgado-Chávez R., Torres-Jardón R., et al. (2012a). Neuroinflammation, hyperphosphorilated tau, diffuse amyloid plaques and down- regulation of the cellular prion protein in air pollution exposed children and adults. J. Alzheimer Dis. 28, 93–107
- Calderón-Garcidueñas L., Mora-Tiscareño A., Ontiveros E., Gómez-Garza G., Barragán-Mejía G., Broadway J., et al. (2008a). Air pollution, cognitive deficits and brain abnormalities: a pilot study with children and dogs. Brain Cogn. 68, 117–127 10.1016/j.bandc.2008.04.008
- Calderón-Garcidueñas L., Mora-Tiscareño A., Fordham L. A., Valencia-Salazar G., Chung C. J., Rodriguez-Alcaraz A., et al. (2003). Respiratory damage in children exposed to urban pollution. Pediatr. Pulmonol. 36, 148–161 10.1002/ppul.10338
- Calderón-Garcidueñas L., Vincent R., Mora-Tiscareño A., Franco-Lira M., Henríquez-Roldán C., Barragán-Mejía G., et al. (2007). Elevated plasma endothelin-1 and pulmonary arterial pressure in children exposed to air pollution. Environ. Health Perspect. 115, 1248–1253 10.1289/ehp.9641
- Calderón-Garcidueñas L., Villarreal-Calderon R., Valencia-Salazar G., Henríquez-Roldán C., Gutiérrez-Castrellón P., Torres-Jardón R., et al. (2008b). Systemic inflammation, endothelial dysfunction, and activation in clinically healthy children exposed to air pollutants. Inhal. Toxicol. 20, 499–506 10.1080/08958370701864797
- AV. Agapitov, WG. Haynes, Role of endothelin in cardiovascular disease., in J Renin Angiotensin Aldosterone Syst, vol. 3, nº 1, Mar 2002, pp.1-15
- S. Schinelli, Pharmacology and physiopathology of the brain endothelin system: an overview., in Curr Med Chem, vol. 13, nº 6, 2006, pp. 627-38
- Thomson E., Kumarathasan P., Goegan P., Aubin R. A., Vincent R. (2005). Differential
regulation of the lung endothelin system by urban particulate matter and ozone. Toxicol. Sci. 88,
103–113 10.1093 - Thomson E. M., Kumarathasan P., Calderón-Garcidueñas L., Vincent R. (2007). Air Pollution
alters brain and pituitary endothelin-1 and inducible nitric oxide synthase gene expression.
Environ. Res. 105, 224–233 10.1016/ - Tamagawa E., Bai N., Morimoto K., Gray C., Mui T., Yatera K., et al. (2008). Particulate matter
exposure induces persistent lung inflammation and endothelial dysfunction. Am. J. Physiol.
Lung Cell Mol. Physiol. 295, L79–L85 10.1152 - Cao L., Xu C. B., Zhang Y., Cao Y. X., Edvinsson L. (2011). Second hand smoke exposure
induces Raf/ERK/MAPK-mediated upregulation of cerebrovascular endothelin ETA receptors.
BMC Neurosci. 12:109 10.1186/ - Matsumoto G., Nakagawa N. K., Vieira R. P., Mauad T., da Silva L. F., de André C. D., et al.
(2010). The time course of vasoconstriction and endothelin receptor A expression in pulmonary
arterioles of mice continuously exposed to ambient urban levels of air pollution. Environ. Res.110, 237–243 10.1016/ - Calderón-Garcidueñas L., Vincent R., Mora-Tiscareño A., Franco-Lira M., Henríquez-Roldán C.,
Barragán-Mejía G., et al. (2007). Elevated plasma endothelin-1 and pulmonary arterial pressure
in children exposed to air pollution. Environ. Health Perspect. 115, 1248–1253 10. - Calderón-Garcidueñas L., Villarreal-Calderon R., Valencia-Salazar G., Henríquez-Roldán C.,
Gutiérrez-Castrellón P., Torres-Jardón R., et al. (2008b). Systemic inflammation, endothelial
dysfunction, and activation in clinically healthy children exposed to air pollutants. Inhal. Toxicol.
20, 499–506 10. - Calderón-Garcidueñas L., Kavanaugh M., Block M. L., D’Angiulli A., Delgado-Chávez R.,
Torres-Jardón R., et al. (2012a). Neuroinflammation, hyperphosphorilated tau, diffuse amyloid
plaques and down- regulation of the cellular prion protein in air pollution exposed children and
adults. J. Alzheimer Dis. 28, 93–107 - Silbert LC1, Howieson DB, Dodge H, Kaye JA
Cognitive impairment risk: white matter hyperintensity progression matters.
Neurology. 2009 Jul 14;73(2):120-5. - Daulatzai M. A. (2012). Quintessential risk factors: their role in promoting cognitive dysfunction
and Alzheimer’s disease. Neurochem. Res. 37, 2627–2658 10.1007 - Calderón-Garcidueñas L1, Engle R, Mora-Tiscareño A, Styner M, Gómez-Garza G, Zhu H, Jewells V, Torres-Jardón R, Romero L, Monroy-Acosta ME, Bryant C, González-González LO, Medina-Cortina H, D’Angiulli A.
Exposure to severe urban air pollution influences cognitive outcomes, brain volume and systemic inflammation in clinically healthy children. Brain Cogn. 2011 Dec;77(3):345-55. - Akita M., Kuwahara M., Itoh F., Nakano M., Osakabe N., Kurosawa T., et al. (2008). Effects of
cacao liquor polyphenols on cardiovascular and autonomic nervous functions in
hypercholesterolaemic rabbits. Basic Clin. Phamacol. Toxcol. 103, 581–587 - Selmi C., Cocchi C. A., Lanfredini M., Keen C. L., Gershwin M. E. (2008). Chocolate at heart:
the anti-inflammatory impact of cocoa flavanols. Mol. Nutr. Food Res. 52, 1340–1348 - Ghosh D., Scheepens A. (2009). Vascular action of polyphenols. Mol. Nutr. Food Res. 53, 322–
331 - Spadafranca A., Martinez-Conesa C., Sirini S., Testolin G. (2010). Effect of dark chocolate on
plasma epicatechin levels, DNA resistance to oxidative stress and total antioxidant activity in
healthy subjects. Br. J. Nutr. 103, 1008–1014 - Fisher N. D., Sorond F. A., Hollenberg N. K. (2006). Cocoa flavonols and brain perfusion. J.
Cardiovasc. Pharmacol. 47Suppl. 2, S210–S214 - Francis S. T., Head K., Morris P. G., Macdonald I. A. (2006). The effect of flavonol-rich cocoa
on the fMRI response to a cognitive task in healthy young people. J. Cardiovasc. Pharmacol.
47Suppl. 2, S215–S220 - Scholey A. B., French S. J., Morris P. J., Kennedy D. O., Milne A. L., Haskell C. F. (2010).
Consumption of cocoa flavonols results in acute improvements in mood and cognitive
performance during sustained mental effort. J. Psychopharmacol. 24, 1505–1514 - Desideri G., Kwik-Uribe C., Grassi D., Necozione S., Ghiadoni L., Mastroiacovo D., et al.
(2012). Benefits in cognitive function, blood pressure, and insulin resistance through cocoa
flavonol consumption in elderly subjects with mild cognitive impairment: the Cocoa, Cognition,
and Aging (CoCoA) study. Hypertension 60, 794–801 - Vauzour D. (2012). Dietary polyphenols as modulators of brain functions: biological actions and
molecular mechanisms underpinning their beneficial effects. Oxid. Med. Cell Longev.
2012:914273 - Wilson P.K. Centuries of seeking chocolate’s medicinal benefits. Lancet. 2010;376:158–159
- Wilson P.K. Chocolate as Medicine: A Changing Framework of Evidence Throughout History. In: Paoletti R., Poli A., Conti A., Visioli F., editors. Chocolate and Health. Springer Verlag Italia; Milano, Italia: 2012. pp. 1–16.
- Von Linné (Linneaus) C. Om Chokladdryken. Fabel; Stoccolma, Svezia: 1741.